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Linear Regression: Introduction I

A typical example of a linear regression model:

yi = β0 + β1x1,i + β2x2,i + · · ·+ βK xK ,i + εi ,

where
I i = 1, . . . , n indexes observations

I yi , a scalar, is often referred to as the dependent variable

I xk,i , is the ith observation of the kth explanatory variable, or
independent variable (independent of what?), or regressor

I The βk terms represent the parameters.
There are K parameters, one for each regressor.

I εi is the disturbance or error term

I Only the yi and xk,i terms are observed by the econometrician.
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Linear Regression: Introduction II

A typical example of a linear regression model:

yi = β0 + β1x1,i + β2x2,i + · · ·+ βK xK ,i + εi ,

Today’s questions:
I Where does it come from?
I What assumptions do we need to estimate β?
I How do we estimate β?
I How to interpret estimates?
I What are the estimator’s (finite sample) properties?
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Linear Regression: Matrix Notation

We can express the linear regression model in vector notation

y = Xβ + ε,

where
I y is a n × 1 vector of observations of the dependent variable
I X is a n × K vector of observations of the dependent variable
I β is a K × 1 vector of parameters
I ε is a n × 1 vector of error terms

Note that each row of this equation corresponds to the previous
equation for a single observation i :

yi = x′iβ + εi ,

Conventions: Roman symbols are observed, Greek are not, bold means
vector notation, bold capitals means matrices.
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Example: Mincerian Regression I

Let’s suppose we are interested in how worker’s wages depend on
education and experience (known as Mincerian regression or Mincer
earnings function for Jacob Mincer).

yi could be worker i ’s wages, and x′i = (1, edui , expi ), where
I edui is worker i ’s education (in years)
I expi is worker i ’s work experience (in years)
I Note that the regressors include a constant

Paul T. Scott NYU Stern L3 - Linear Regression Fall 2021 5 / 64



Example: Mincerian Regression I

yi is i ’s wages, and x′i = (1, edui , expi )

The data matrices for the Mincerian regression might look like this:

y =


12
35
20
...

 X =


1 12 2
1 16 5
1 12 21
...

...
...
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Strict Exogeneity

y = Xβ + ε

This equation doesn’t mean much until we say something about the
error term ε.

The first (and strongest) assumption on error terms we will consider is
strict exogeneity:

E [ε|X] = 0

Note that the law of iterated expectations implies

E [εi ] = EX [E [εi |X]] = 0.

It also implies that the error terms are uncorrelated with the
regressors: Cov [εi , X] = 0 and Cov [εi , xi ] = 0.
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Strict Exogeneity and Conditional Means

y = Xβ + ε (1)

E [ε|X] = 0 (2)

Now, we have a meaningful model.

Note that

E [y|X] = E [Xβ + ε|X]

= Xβ + E [ε|X]

= Xβ,

so equations (1) and (2) already imply that the conditional mean is a
linear function of X.
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Strict Exogeneity Interpretation

y = Xβ + ε (1)

E [ε|X] = 0 (2)

Strict exogeneity captures the idea that x is varied in the data without
changing the mean of the unobservable factors affecting y .

Strict exogeneity is very plausible in the context of experimental
variation (especially in double blind studies)

Unfortunately, social scientists are sometimes unable to rely on
experimental variation, and strict exogeneity is rarely plausible in the
context of naturally occurring data. For this reason, we will consider
different assumptions on the error terms, but this is the starting point.
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Omitted Variables and Endogeneity

Suppose we estimate the following Mincerian regression:

ln (wagei ) = β0 + β1edui + β2expi + β3exp
2
i + εi .

Furthermore suppose the true model is:

ln (wagei ) = β0 + β1edui + β2expi + β3exp
2
i + β4abilityi + εi

Then, when estimating the first equation (because ability is
unobserved), the error term is effectively:

ε̃i = β4abilityi + εi

Note that even if εi satisfies strict exogeneity, ε̃i will not if, for
instance, ability is correlated with education. We say x is endogenous
if E [ε|x ] 6= 0.
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Wherefore Linearity?

When would E [yi |xi] = x′iβ be true?

We might start with the conditional mean as a general function of x

yi = f (xi ) + εi ,

and then what we’ve done is impose that f is a linear function.

We might also think of the model as a linear approximation (using
Taylor’s theorem).

I Actually, it can be a polynomial approximation, not just a linear
approximation . . .
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Linear-in-Parameters I

The linear regression framework does not impose that y is a linear
function of any particular variable x

The regressors in xi can include squared terms, higher powers, and
other functions of a variable x

For example, x′i =
(
1, edui , expi , exp

2
i

)
in the Mincerian regression

would allow declining (or increasing) returns to work experience.

The “Linear” part of “Linear Regression” really means
linear-in-parameters, which is much less restrictive than being linear
with respect to a particular variable.
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Linear-in-Parameters II

The dependent variable can also involve nonlinear transformations.

For example, yi in the Mincerian regression is typically the natural log
of worker i ’s wage:

ln (wagei ) = β0 + β1edui + β2expi + β3exp
2
i + εi .

Models of demand (or supply) sometimes have the form

ln (qi ) = β0 + β1 ln (pi ) + εi ,

in which case β1 represents the price elasticity of demand (supply)
and does not depend on the units that prices and quantities are
measured in (Check this). Economists love logs!

What would it take for a model to not be linear in parameters?
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Derivation from Multivariate Normal

Another way to motivate the linear regression function is from the
multivariate normal distribution.

Suppose (y , x)′ ∼ N (µ, Σ), where

µ =

(
µy
µx

)
Σ =

(
σ2y ρσyσx

ρσyσx σ2x

)
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Multivariate Normal Data

µ =

(
0
0

)

Σ =

(
4 –1

–1 1

)
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Multivariate Normal Marginal Densities
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Here, I approximate the conditional density Pr (y |x = 0) by plotting
the density of y when we focus on observations with x ∈ (–.04, .04)
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R code

# install.packages(’MASS ’)

# install.packages(’ggplot2 ’)

# install.packages(’reshape ’)

library(MASS)

library(ggplot2)

library(reshape)

mu <- c(0,0)

Sigma <- matrix(c(1,-1,-1,4) ,2,2)

xy <- mvrnorm(n = 5000, mu, Sigma)

plot(xy , xlab="x",ylab="y")

xy <- mvrnorm(n = 100000 , mu , Sigma)

xy.df <- as.data.frame(xy)

names(xy.df) <- c("x", "y")

xy.stacked <- melt(xy.df)

ggplot(xy.stacked , aes(value , fill = variable)) + geom_density(

alpha = 0.2)

xy.selected <- xy.df[xy.df$x>-.04 & xy.df$x<.04, ]

ggplot(xy.selected , aes(y)) + geom_density(alpha = 0.2)
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Multivariate Normal and Regression Equation

Suppose (y , x)′ ∼ N (µ, Σ), where

µ =

(
µy
µx

)
Σ =

(
σ2y ρσyσx

ρσyσx σ2x

)

It’s also the case that

E (y |x) = µy + ρ
σy
σx

(x – µx )

and
y = E (y |x) + ε

with ε normally distributed.

Normally distributed error terms: the first case we will consider (and
easiest to analyze)
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Full Rank I

Our next assumption is that the matrix of regressors has full rank
I X is a n × K matrix with rank K .

A model of consumption that violates full rank:

C = β1 + β2Salary + β3Nonsalary income + β4Total income + ε

Conditional on total income, any increase in salary must be met by a
proportional decrease in nonsalary income
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Full Rank II

Consider the following model of consumption:

C = β1 + β2Salary + β3Nonsalary income + β4Total income + ε

Total income = Salary + Nonsalary income,

so

C = β1 + (β2 + β4) Salary + (β3 + β4) Nonsalary Income + ε

C = β1 + β̃2Salary + β̃3Nonsalary Income + 0 · Total Income + ε

Assuming β4 6= 0 in the original equation, we have constructed an
empirically equivalent equation with different parameters. That is, for
this model, we have different values for β that are observationally
equivalent.
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Full Rank III

Exercise: suppose I wanted to build a model of the approval ratings of
major party nominees for US president.

I want to include the following regressors:
I Years holding elected office
I Age
I Gender
I Indicator variable for being married to a former president

What’s the problem? Compare to the previous case with salaries –
any difference?
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Linear Independence

Another term for the full rank assumption (Rank (X) = K ) is linear
independence. Multicollinearity refers to a lack of linear
independence. When a model has multicollinearity, we say it is
not identified.

Note that this is distinct from statistical independence.

Linear independence means that one variable cannot be algebraically
predicted by others.

Statistical independence means that the variation in two random
variables is unrelated. Linear independence does not imply statistical
independence. Why not? Does statistical independence imply linear
independence?
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Assumptions so far

The assumptions we have introduced so far:

y = Xβ + ε (1)

E [ε|X] = 0 (2)

Rank(X) = K (3)

Note that we have not made any assumptions on the statistical
properties of X. There is no need to do so; X can be fixed or random
for now. What matters is the distribution of the error terms
conditional on X.

Not all assumptions will be maintained throughout the course (or even
this lecture). When we consider formal results, I will be explicit about
which assumptions are needed.
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Homoscedasticity

Another important assumption is homoscedasticity:

E
[
εε′|X

]
= σ2I

where I is a n × n identity matrix.

Given that E [ε|X] = 0, this means that

Var [ε] = σ2I

In words, homoscedasticity says that each error term has the same
variance; i.e., the variance of εi is not related to xi .
Heteroscedastcity is the alternative. Can you think of some cases of
heteroscedasticity?

The assumption also rules out correlation between the error terms for
different observations.
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Normal Error Terms

A convenient assumption is that error terms are normally distributed:

ε|X ∼ N
(

0,σ2I
)

Where are we going?
I This assumption will make it easy to derive normally distributed

estimators
I Ultimately, the central limit theorem can be used to derive asymptotic

normality of estimators (that is, estimators that will be normally
distributed as the sample gets large), so in practice it’s rarely necessary
to assume normal error terms.
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Residuals

We used β to denote the true vector of parameters; let’s use b to
denote estimates of or candidates for β.

A residual is the fitted value given a particular potential parameter
vector:

ei (b) = yi – x′ib

A residual captures the degree to which the linear prediction x′ib
explains the dependent variable yi .

Formally, we should think of residuals as being a function of candidate
parameter vectors, but we will often just write ei .
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Least Squares

It makes intuitive sense to want to find a value of b that makes
residuals small, so that the estimated model explains the data well.

There are many possible ways to think about making the residuals
small, but by far the most popular criterion is the sum of squared
residuals:

SSR (b) =
n∑

i=1

ei (b)2 =
n∑

i=1

(
yi – x′ib

)2
= e (b)′ e (b)

The least squares estimator minimizes the sum of squared residuals:

b̂LS ≡ arg min
b

SSR (b)

For linear models with homoscedastic errors, the least squares
estimate is typically called the Ordinary Least Squares estimator.
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Regression with Single Variable I

Let’s consider a model with only a single variable regressor (and a
constant):

yi = β0 + β1xi + εi

Similar to the example in the introduction, we might have
I yi : Dependent Variable (e.g., test score of student i)
I xi : Independent Variable (e.g., class size of student i)
I εi : regression error (e.g., noise in the model)
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Derivation of Bivariate Linear Regression Estimator

yi = β0 + β1xi + εi

SSR (b0, b1) =
n∑

i=1

ei (b0, b1)2 =
n∑

i=1

(yi – b0 – b1xi )
2

(On board) What are the OLS estimates of (β0,β1)?
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OLS Estimator

The OLS estimates are:

b̂1 =

n∑
i=1

(xi – x̄)(yi – ȳ)

n∑
i=1

(xi – x̄)2
=

sx ,y

s2x

b̂0 = ȳ – b̂1x̄

where the s2x refers to the sample variance of x and sx ,y refers to the
sample covariance of x and y .
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Using the OLS Estimator

Now let’s go ahead and actually use the OLS estimator on Alice and
Bob (recall the intro lecture)

Suppose small classes have 15 students in them, large classes 20
students

Our data is:
I Alice: (y1, x1) = (6, 15)
I Bob: (y2, x2) = (3, 20)

Note that this is a riduclously small sample size (the smallest we could
have and still solve for the OLS estimator).
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Implementing the OLS Estimator

(On board) Find the OLS estimator for β0 and β1 for the data
(y1, x1) = (6, 15) and (y2, x2) = (3, 20)

Formulas:

b̂1 =

n∑
i=1

(xi – x̄)(yi – ȳ)

n∑
i=1

(xi – x̄)2
=

cov (x , y)

var (x)

b̂0 = ȳ – b̂1x̄

You will never have to do this algebra yourself. It becomes very
cumbersome with lots of observations and with lots of regressors,
which we now turn to.
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Multiple Linear Regression

Let’s return to the multiple linear regression setting (multiple
regressors):

y = Xβ + ε,

We can write the sum of squared residuals as follows:

SSR (b) = ei (b)′ ei (b) = y′y – 2y′Xb + b′X′Xb

The necessary condition for a minimum:

∂SSR (b)

∂b
= –2X′y + 2X′Xb = 0

Recalling the rules:

∂u′v
∂v

= u
∂v′Av

∂v
= 2Av
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The OLS Formula

The necessary condition for a minimum:

∂SSR (b)

∂b
= –2X′y + 2X′Xb = 0

Thus, b must satisfy
X′Xb = X′y

Assuming X′X is invertible (be careful!), we have

b̂OLS ≡
(
X′X

)–1
X′y

Note the similarity to the bivariate least squares estimator.
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Full Rank and Identification

The invertibility of X′X is not guaranteed in general, but it is implied
by the full rank condition: Rank (X) = K .

When X does not have full rank, neither does X′X, and

X′Xb = X′y

can be solved by multiple values of b.

Linear algebra review: when a square matrix A is not invertible, it has
a non-trivial nullspace. This means that

Ab = 0

can be solved by multiple vectors b. This implies that, for any c,

Ab = c

also has multiple solutions if it has at least one solution.
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Properties of Residuals

Let e denote the vector of OLS residuals, and consider

X′e = X′ (XbOLS – y)

Substituting in the OLS formula,

X′e = X′
(

X
(
X′X

)–1
X′y – y

)
This simplifies to

X′e = X′y – X′y = 0

This implies that (1) the OLS residuals sum to zero, given that one of
the regressors is a constant, and (2) the OLS residuals are
uncorrelated with the regressors. Intuitively: there is no variation left
in e that can be explained by X.
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Multiple Regression Coefficients

We saw that for a bivariate regression, the slope on the regressor is
given by

b̂1 =
sx ,y

s2x

Does it follow that, with multiple regressors, the coefficient on the kth
regressor is

b̂k =
sxk ,y

s2xk
?

If not, under what conditions?
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Silly Example

Consider the following model of rectangular painting area:

lnAi = β0 + β1 lnWi + β2 lnHi + εi

where
I Wi is the painting i ’s width
I Hi is the painting i ’s width
I Ai is the painting i ’s area, Ai = Wi · Hi
I εi is measurement error in painting i ’s area

What should the β’s be in theory (i.e., given what you know about
geometry)?
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Silly Example II

Suppose lnWi and lnHi are correlated in the population (naturally)(
lnWi
lnHi

)
∼ N

((
µw
µh

)
,

(
σ2w σwh
σwh σ2h

))

Then, notice that

Cov (lnAi , lnWi ) = Cov (lnWi + lnHi , lnWi )
= Var (lnWi ) + Cov (lnWi , lnHi )

Finally,

Cov (lnA, lnW )

Var (lnW )
=

Var (lnW ) + Cov (lnH, lnW )

Var (lnW )
= 1+

Cov (lnH, lnW )

Var (lnW )
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Silly Example III

In a bivariate regression, recall the slope would be given by

Cov (lnA, lnW )

Var (lnW )
= 1 +

Cov (lnH, lnW )

Var (lnW )
,

so the term
Cov(lnH,lnW )

Var(lnW )
represents bias.

Implication: if the OLS coefficients in a multiple regression had the
same formula as the coefficients in a bivariate regression, there would
be bias.

Exception: if the regressors lnH and lnW are uncorrelated, there will
be no bias above, and OLS with multiple regressors delivers the same
coefficients as if we ran a bivariate regression with each of the
regressors separately.

This example also makes a point about omitted variables bias: if
height is unobserved, the regression of lnA on only lnW will deliver
the biased coefficient above.
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Silly Example IV

b̂OLS ≡
(
X′X

)–1
X′y

Indeed, OLS with multiple regressors does not deliver the bivariate
regression coefficient sxky/s2xk for each regressor xk (except in the
case of orthogonal regressors)

To gain some intuition for what this formula is doing, let’s consider
the

(
X′X

)
and X′y pieces separately in the context of the silly model

of painting area.
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Silly Example V

Suppose that wi = lnWi – µw and ln hi = lnHi – µh

Let X = [w h]

It follows that

X′X =

( ∑
(lnWi – µw )2

∑
(lnWi – µw ) (lnHi – µh)∑

(lnWi – µw ) (lnHi – µh)
∑

(lnHi – µh)2

)

Note: if we multiply that by n–1, we have the sample analog of the
covariance matrix.
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Silly Example VI

Similarly,

X′y =

( ∑
(lnWi – µw ) (lnAi – µa)∑
(lnHi – µh) (lnAi – µa)

)
,

is the sample covariance of x and y (times n).

Therefore, we have

b̂OLS =
(
X′X

)–1
X′y =

(
n–1X′X

)–1 (
n–1X′y

)
= S–1

xx sxy

where Sxx is the sample covariance matrix for x and sxy is the sample
covariance of x and y .
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Silly Example VII

b̂OLS = S–1
xx sxy

The population moments for the model of painting areas are

Var (x) =

(
σ2w σwh
σwh σ2h

)
Cov (x, y) =

(
σ2w + σwh
σ2h + σwh

)
Note that

(Var (x))–1 =
1

σ2wσ
2
h – σ2wh

(
σ2h –σwh

–σwh σ2w

)
With some algebra, the population-moments version of OLS gives us
the right coefficients:

(Var (x))–1 Cov (x, y) =

(
1
1

)
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The Frisch-Waugh Theorem I

Think about separating X into two sub-matrices:

X = [X1 X2] ,

with
y = X1β1 + X2β2 + ε

Frisch-Waugh Theorem

The OLS regression of y on [X1, X2] yields a subvector b2 of coefficient
estimates that is the same as the result from a regression of the residuals
from a regression of y on X1 are regressed on the residuals from a
regression of X2 on X1.
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The Frisch-Waugh Theorem II

In other words, let’s start by regressing y on X1. Let’s label the
residuals from this regression y∗.

Let’s also regress start by regressing X2 on X1 (think about regressing
each column of X2 on X1). Let’s label the residuals from this
regression X∗2.

If we regress y∗ on X∗2, we get the same coefficient on X∗2 that we
would have had in the full regression of y on [X1, X2]. i

An implication is that the coefficient on each variable can be thought
of as the effect of that variable after controlling for all the other
variables. Thus, OLS coefficients are sometimes called partial
regression coefficients.
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The Frisch-Waugh Theorem III

Bivariate linear regression is easy to visualize (scatter plot with a line
running through). Frisch-Waugh tells us how we can visualize the
effect of a single variable from a multiple regression.

One implication of Frisch-Waugh is that, if we de-mean all the
variables and then run a regression with the de-meaned variables (but
leaving out the constant term in X), we will get the same coefficients
on all the variables.
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Units and Coefficients

In simple linear regression, it’s easy to see that re-scaling (changing
the units of x) will rescale the parameter estimates in the opposite
way:

b̂1 =

n∑
i=1

(xi – x̄)(yi – ȳ)

n∑
i=1

(xi – x̄)2

If you multiply each value of x by λ, the numerator gets multiplied by
λ, and the denominator by λ2, meaning b̂1 gets divided by λ. The
same is true in the multiple regression framework (Frisch-Waugh
makes this easier to see).

Exercise: if the regressor x in a bivariate regression is the log of a
variable, show that rescaling the original variable does not affect b̂1.
What about b̂0?
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Goodness of Fit

The total sum of squares, or the total variation in the dependent
variable:

SST = (y – iy)′ (y – iy)

The dependent variable decomposes into a prediction and a residual:

y = Xb + e = ŷ + e

where Xb = ŷ is the prediction or fitted value of y .

We can think about decomposing the variation in y into variation in ŷ
and e. Intuitively, we want the variation in ŷ to account for as much
as possible
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Sums of Squares

Define
M0 = I – n–1ii′.

note that M0 is symmetric and idempotent (on board).

Notice that y′M0y is the SST.

Also, we can show that

y′M0y = b′X′M0Xb + e′e,

where the first term on the RHS is known as the regression sum of
squares (SSR), and the second term is the error sum of squares
(SSE).

SST = SSR + SSE
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Coefficient of Determination

The coefficient of determination is defined as the proportion of the
variation in the dependent variable explained by the model:

R2 =
SSR

SST
=

b′X′M0Xb

y′M0y
= 1 –

e′e
y′M0y

R2 is a measure of goodness of fit that always goes up as we add
more regressors. It doesn’t tell us whether it’s “worth it” to add a
new regressor to the model. (Later we will talk about why overfitting
can be bad in finite samples.)

Adjusted R2 is more useful for model selection because it
incorporates a penalty for the number of regressors:

R
2

= 1 –
e′e/ (n – K )

y′M0y/ (n – 1)
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Finite Sample Properties

Given assumptions (1)-(3), homoscedasticity, and normal error terms,

bOLS |X ∼ N
(
β,σ2

(
X′X

)–1)
Proof on board

Note: proof that it’s unbiased and expression for variance do not
require normally error terms, but it would be hard to say what the
finite sample distribution is, exactly, without normality.
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Omitted Variables Bias

Suppose the econometrician only observes regressors X, but the true
model is

y = Xβ + zγ + ε,

The OLS estimator will equal

b =
(
X′X

)–1
X′y = β +

(
X′X

)–1
X′zγ +

(
X′X

)–1
X′ε

The last term is mean zero given the strict exogeneity assumption.

Note that the second term will not be zero if X and z are correlated;
i.e. if X′z 6= 0.

Implication: correlation between omitted variables and the observed
regressors makes OLS biased.
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Bias with multiple variables

Consider a model with two variables:

yi = β0 + β1x1,i + β2x2,i + εi ,

and suppose that

x1,i =u1,i + u3,i + εi

x2,i =u2,i + u3,i

where the u’s and ε are all independently distributed.

We know that OLS will deliver a biased estimate of β1, but will OLS
still be consistent for β2?

No! The correlation between x1 and x2 leads to bias even in β2.

I Thus, endogeneity problems are a big deal not only for our variables of
interest, but also when it comes to control variables.
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Bias with multiple variables II

Consider “controlling” for x1 with the wrong estimate b1 of β1:

yi – b1x1,i = β0 + β2x2,i + εi + (β1 – b1)x1,i ,

Given that b1 6= β1, we get some stuff in the error term:

yi – b1x1,i = β0 + β2x2,i + εi + (β1 – b1)(u1,i + u2,i + εi ),

and we now have an endogeneity problem because x2,i = u2,i + u3,i
and u2,i is now in the error term.

Note: we could formalize this intuition using the Frisch-Waugh
Theorem.
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Irrelevant Variables

What if we include a variable in X that doesn’t actually affect y?

This can be accommodated in the linear regression framework as a
regressor that has a coefficient βk = 0.

Thus, this does not create any bias in the other coefficients, and the
expected coefficient on the irrelevant variable is zero.

However, this can reduce the precision of the estimates of the other
coefficients, and it’s not generally a good idea to add as many
variables to a regression as you can (overfitting).
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Standard Errors

bOLS |X ∼ N
(
β,σ2

(
X′X

)–1)
σ2
(
X′X

)–1
is the covariance matrix of the parameter estimates – it

tells us how precise bOLS is as an estimate of β.

The diagonal elements of σ2
(
X′X

)–1
are the variances of each of the

parameter estimates. The square roots of those are standard errors.
Note that standard errors are standard deviations of the distribution of
an estimator.

The off-diagonal elements of σ2
(
X′X

)–1
are also important

(especially when we get to hypothesis testing). They indicate whether
two parameter estimates are correlated.

Paul T. Scott NYU Stern L3 - Linear Regression Fall 2021 57 / 64



Estimating Standard Errors

bOLS |X ∼ N
(
β,σ2

(
X′X

)–1)
(
X′X

)–1
is just data, but σ2 must be estimated (recall that it’s the

variance of the normally distributed error terms).

Intuitively, the residuals are estimates of the error terms, so the
sample variance of residuals is what we use to estimate σ2:

s2 =
e′e

n – K

Similar to how the unbiased estimator of the variance of a random
variable with unknown mean requires us to divide by n – 1, here we
have to divide by n – K , where K is the number of parameters being
estimated.
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Mean-squared error

Consider a parameter vector γ and consider x′γ as a predictor of y .

The mean squared error of this predictor is

MSE = E
[(
y – x′γ

)2]
It’s important to notice that this can be written

MSE = E
[
(y – E [y |x])2

]
+ E

[(
E [y |x] – x′γ

)2]
Result: OLS is the value of γ that minimizes mean square error. This
does not require normality of the error terms. (Proof on board)
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Gauss-Markov Theorem

Gauss-Markov Theorem

In the linear regression model with homoscedastic errors, The OLS
estimator is the best linear unbiased estimator (BLUE).

“Best” means estimator with lowest variance – most precise

Normally distributed error not assumed here

If error terms are not homoscedastic, OLS is still unbiased given strict
exogeneity, but lower-variance estimators are possible (see:
Generalized Least Squares)

Proof on board
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Finite Sample vs. Asymptotic Properties

It’s rare to have small-sample properties of an estimator

Econometric studies typically do Monte Carlo (simulation) studies to
learn about finite-sample performance of estimators.

For most estimators, we derive asymptotic properties, i.e.,

√
n (bOLS – β)⇒d N (0, Σ)

The above statement says that the OLS estimator converges in
distribution to a normally distributed variable.

Part of that result is that OLS is consistent. Formally, consistency
means that an estimator converges in probability to the true value.
Intuitively, this means that an estimator will be unbiased in very large
samples (and also that the variance of the estimator becomes small in
large samples).
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Asymptotics: Setup

Asymptotic analysis refers to analyzing statistics of the data as the
number of observations n grows to infinity (e.g., the central limit
theorem).

To do asymptotic analysis, we specify a data generating process.

A data generating process describes the distribution of a sequence of
observations (xi , εi ) for i = 1, 2, . . . n.

The simplest case is assuming that observations are independent and
identically distributed (i.i.d)

In other settings, the observations are allowed to be correlated, but in
a limited way that requires the dependence between “distant”
observations to go to zero – see stationarity and ergodicity (e.g.,
time series, and more recently some spatial analysis)

We also need the data to be “well-behaved”, i.e. E
[
xx′
]

must have
full rank and the error terms must have finite variance.
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OLS Asymptotic Distribution

We can use the central limit theorem to show that OLS is
asymptotically normally distributed:

bOLS ∼a N
(
β,
σ2

n
E
[
xix
′
i

]–1)
where ∼a signifies convergence in distribution.

Note that this is just like the finite-sample distribution we got with
normally distributed error terms.

Paul T. Scott NYU Stern L3 - Linear Regression Fall 2021 63 / 64



Mincerian Regression, Cornwell and Rupert (1988)

Residuals:

Min 1Q Median 3Q Max

-2.2034 -0.2379 -0.0071 0.2327 2.1380

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.245e+00 7.170e-02 73.153 < 2e-16 ***

ED 5.654e-02 2.612e-03 21.644 < 2e-16 ***

EXP 4.045e-02 2.174e-03 18.605 < 2e-16 ***

EXP2 -6.811e-04 4.783e-05 -14.242 < 2e-16 ***

WKS 4.485e-03 1.090e-03 4.115 3.94e-05 ***

OCC -1.405e-01 1.472e-02 -9.544 < 2e-16 ***

SOUTH -7.210e-02 1.249e-02 -5.773 8.37e-09 ***

SMSA 1.390e-01 1.207e-02 11.513 < 2e-16 ***

MS 6.736e-02 2.063e-02 3.265 0.0011 **

FEM -3.892e-01 2.518e-02 -15.457 < 2e-16 ***

UNION 9.015e-02 1.289e-02 6.993 3.13e-12 ***

---

Residual standard error: 0.3524 on 4154 degrees of freedom

Multiple R-squared: 0.4183 , Adjusted R-squared: 0.4169

F-statistic: 298.7 on 10 and 4154 DF, p-value: < 2.2e-16
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